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1 Introduction

Generalized linear models (GLM) extend the concept of the well understood linear regression
model. The linear model assumes that the conditional expectation of Y (the dependent or
response variable) is equal to a linear combination X>β, i.e.

E(Y |X) = X>β.

This could be equivalently written as Y = X>β + ε. Unfortunately, the restriction to linearity
cannot take into account a variety of practical situations. For example, a continuous distribution
of the error ε term implies that the response Y must have a continuous distribution as well.
Hence, the linear regression model may fail when dealing with binary Y or with counts.

Example 1 (Bernoulli responses)
Let us illustrate a binary response model (Bernoulli Y ) using a sample on credit worthiness. For
each individual in the sample we know if the granted loan has defaulted or not. The responses
are coded as

Y =

{
1 loan defaults,
0 otherwise.

The term of interest is how credit worthiness depends on observable individual characteristics
X (age, amount and duration of loan, employment, purpose of loan, etc.). Recall that for a
Bernoulli variable P (Y = 1|X) = E(Y |X) holds. Hence, the default probability P (Y = 1|X)
equals a regression of Y on X. A useful approach is the following logit model:

P (Y = 1|X = x) =
1

1 + exp(−x>β)
.

Here the function of interest E(Y |X) is linked to a linear function of the explanatory variables
by the logistic cumulative distribution function (cdf) F (u) = 1/(1 + e−u) = eu/(1 + eu). 2

The term generalized linear models (GLM) goes back to Nelder and Wedderburn (1972) and
McCullagh and Nelder (1989) who show that if the distribution of the dependent variable Y is a
member of the exponential family, then the class of models which connects the expectation of Y
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to a linear combination of the variables X>β can be treated in a unified way. In the following
sections we denote the function which relates µ = E(Y |X) and η = X>β by η = G(µ) or

E(Y |X) = G−1(X>β).

This function G is called link function. For all considered distributions of Y there exists at least
one canonical link function and typically a set of frequently used link functions.

2 Model Characteristics

The generalized linear model is determined by two components:

• the distribution of Y ,

• the link function.

In order to define the GLM methodology as a specific class of nonlinear models (for a general
approach to nonlinear regression see Chapter III.8), we assume that the distribution of Y is a
member of the exponential family. The exponential family covers a large number of distributions,
for example discrete distributions as the Bernoulli, binomial and Poisson which can handle
binary and count data or continuous distributions as the normal, Gamma or Inverse Gaussian
distribution.

2.1 Exponential Family

We say that a distribution is a member of the exponential family if its probability mass function
(if Y discrete) or its density function (if Y continuous) has the following form:

f(y, θ, ψ) = exp
{
yθ − b(θ)
a(ψ)

+ c(y, ψ)
}
. (1)

The functions a(•), b(•) and c(•) will vary for different Y distributions. Our parameter of
interest is θ, which is also called the canonical parameter (McCullagh and Nelder, 1989). The
additional parameter ψ, that is only relevant for some of the distributions, is considered as a
nuisance parameter.

Example 2 (Normal distribution)
Suppose Y is normally distributed with Y ∼ N(µ, σ2). The probability density function f(y) =
exp

{
−(y − µ)2/(2σ2)

}
/(
√

2πσ) can be written as in (1) by setting θ = µ and ψ = σ and
a(ψ) = ψ2, b(θ) = θ2/2, and c(y, ψ) = −y2/(2ψ2)− log(

√
2πψ). 2

Example 3 (Bernoulli distribution)
If Y is Bernoulli distributed its probability mass function is

P (Y = y) = µy(1− µ)1−y =

{
µ if y = 1,
1− µ if y = 0.

This can be transformed into P (Y = y) = exp (yθ) /(1 + eθ) using the logit transformation
θ = log {µ/(1− µ)} equivalent to µ = eθ/(1 + eθ). Thus we obtain an exponential family with
a(ψ) = 1, b(θ) = − log(1− µ) = log(1 + eθ), and c(y, ψ) = 0. 2

Table 1 lists some probability distributions that are typically used for a GLM. For the binomial
and negative binomial distribution the additional parameter k is assumed to be known. Note
also that the Bernoulli, geometric and exponential distributions are special cases of the binomial,
negative binomial and Gamma distributions, respectively.
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Table 1: GLM distributions.

Range Variance terms
of y f(y) µ(θ) V (µ) a(ψ)

Bernoulli
B(µ) {0, 1} µy(1− µ)1−y eθ

1 + eθ
µ(1− µ) 1

Binomial
B(k, µ) {0, . . . , k}

(
k
y

)
µy(1− µ)k−y keθ

1 + eθ
µ
(
1− µ

k

)
1

Poisson
P (µ) {0, 1, 2, . . .} µy

y! e
−µ exp(θ) µ 1

Geometric
Geo(µ) {0, 1, 2, . . .}

(
µ

1 + µ

)y ( 1
1 + µ

)
eθ

1− eθ
µ+ µ2 1

Negative
Binomial
NB(µ, k)

{0, 1, 2, . . .}
(
k + y − 1

y

)(
µ

k + µ

)y (
k

k + µ

)
keθ

1− eθ
µ+ µ2

k
1

Exponential
Exp(µ) (0,∞) 1

µ exp
(
− x
µ

)
− 1/θ µ2 1

Gamma
G(µ, ψ) (0,∞) 1

Γ(ψ)

(
ψ
µ

)ψ
exp

(
− ψy

µ

)
yψ−1 − 1/θ µ2 1

ψ

Normal
N(µ, ψ2) (−∞,∞)

exp
{
−(y − µ)2/(2ψ2)

}
√

2πψ
θ 1 ψ2

Inverse
Gaussian
IG(µ, ψ2)

(0,∞)
exp

{
−(y − µ)2/(2µ2yψ2)

}√
2πy3ψ

1√
−2θ

µ3 ψ2
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Table 2: Characteristics of GLMs.

Canonical link Deviance
θ(µ) D(y,µ)

Bernoulli
B(µ) log

(
µ

1− µ

)
2
∑[

yi log
(
yi
µi

)
+ (1− yi) log

( 1− yi
1− µi

)]

Binomial
B(k, µ) log

(
µ

k − µ

)
2
∑[

yi log
(
yi
µi

)
+ (k − yi) log

(
k − yi
k − µi

)]

Poisson
P (µ) log(µ) 2

∑[
yi log

(
yi
µi

)
− (yi − µi)

]

Geometric
Geo(µ) log

(
µ

1 + µ

)
2
∑[

yi log
(
yi + yiµi
µi + yiµi

)
− log

( 1 + yi
1 + µi

)]

Negative
Binomial
NB(µ, k)

log
(

µ
k + µ

)
2
∑[

yi log
(
yik + yiµi
µik + yiµi

)
− k log

{
k(k + yi)
k(k + µi)

}]

Exponential
Exp(µ)

1
µ 2

∑[
yi − µi
µi − log

(
yi
µi

)]

Gamma
G(µ, ψ)

1
µ 2

∑[
yi − µi
µi − log

(
yi
µi

)]

Normal
N(µ, ψ2) µ 2

∑[
(yi − µi)2

]

Inverse
Gaussian
IG(µ, ψ2)

1
µ2 2

∑[
(yi − µi)2

yiµ
2
i

]
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2.2 Link Function

After having specified the distribution of Y , the link function G is the second component to
choose for the GLM. Recall the model notation η = X>β = G(µ). In the case that the
canonical parameter θ equals the linear predictor η, i.e. if

η = θ,

the link function is called the canonical link function. For models with a canonical link the
estimation algorithm simplifies as we will see in Subsection 3.3. Table 2 shows in its second
column the canonical link functions of the exponential family distributions presented in Table 1.

Example 4 (Canonical link for Bernoulli Y )
For Bernoulli Y we have µ = eθ/(1 + eθ), hence the canonical link is given by the logit transfor-
mation η = log{µ/(1− µ)}. 2

What link functions could we choose apart from the canonical? For most of the models exists
a number of specific link functions. For Bernoulli Y , for example, any smooth cdf can be used.
Typical links are the logistic and standard normal (Gaussian) cdfs which lead to logit and probit
models, respectively. A further alternative for Bernoulli Y is the complementary log–log link
η = log{− log(1− µ)}.

A flexible class of link functions for positive Y observations is the class of power functions.
These links are given by the Box-Cox transformation (Box and Cox, 1964), i.e. by η = (µλ−1)/λ
or η = µλ where we set in both cases η = log(µ) for λ = 0.

3 Estimation

Recall that the least squares estimator for the ordinary linear regression model is also the
maximum-likelihood estimator in the case of normally distributed error terms. By assuming
that the distribution of Y belongs to the exponential family it is possible to derive maximum-
likelihood estimates for the coefficients of a GLM. Moreover we will see that even though the
estimation needs a numerical approximation, each step of the iteration can be given by a weighted
least squares fit. Since the weights are varying during the iteration the likelihood is optimized
by an iteratively reweighted least squares algorithm.

3.1 Properties of the Exponential Family

To derive the details of the maximum-likelihood algorithm we need to discuss some properties
of the probability mass or density function f(•). For the sake of brevity we consider f to be a
density function in the following derivation. However, the conclusions will hold for a probability
mass function as well.

First, we start from the fact that
∫
f(y, θ, ψ) dy = 1. Under suitable regularity conditions (it

is possible to exchange differentiation and integration) this implies

0 =
∂

∂θ

∫
f(y, θ, ψ) dy =

∫
∂

∂θ
f(y, θ, ψ) dy

=
∫ {

∂

∂θ
log f(y, θ, ψ)

}
f(y, θ, ψ) dy = E

{
∂

∂θ
`(y, θ, ψ)

}
,

where `(y, θ, ψ) = log f(y, θ, ψ) denotes the log-likelihood function. The function derivative of `
with respect to θ is typically called the score function for which it is known that

E

{
∂2

∂θ2
`(y, θ, ψ)

}
= −E

{
∂

∂θ
`(y, θ, ψ)

}2

.
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This and taking first and second derivatives of (1) results in

0 = E

{
Y − b′(θ)
a(ψ)

}
, and E

{−b′′(θ)
a(ψ)

}
= −E

{
Y − b′(θ)
a(ψ)

}2

,

such that we can conclude

E(Y ) = µ = b′(θ), (2)
Var(Y ) = V (µ)a(ψ) = b′′(θ)a(ψ). (3)

Note that as a consequence from (1) the expectation of Y depends only on the parameter of
interest θ. We also assume that the factor a(ψ) is identical over all observations.

3.2 Maximum-Likelihood and Deviance Minimization

As pointed out before the estimation method of choice for β is maximum-likelihood. As an
alternative the literature refers to the minimization of the deviance. We will see during the
following derivation that both approaches are identical.

Suppose that we have observed a sample of independent pairs (Yi,Xi) where i = 1, . . . , n.
For a more compact notation denote now the vector of all response observations by Y =
(Y1, . . . , Yn)> and their conditional expectations (given Xi) by µ = (µ1, . . . , µn)>. Recall that
we study

E(Yi|Xi) = µi = G(X>
i β) = G(ηi).

The sample log-likelihood of the vector Y is then given by

`(Y ,µ, ψ) =
n∑

i=1

`(Yi, θi, ψ). (4)

Here θi is a function of ηi = X>
i β and we use `(Yi, θi, ψ) = log f(Yi, θi, ψ) to denote the individual

log-likelihood contributions for all observations i.

Example 5 (Normal log-likelihood)
For normal responses Yi ∼ N(µi, σ

2) we have `(Yi, θi, ψ) = −(Yi − µi)2/(2σ2) − log
(√

2πσ
)
.

This gives the sample log-likelihood

`(Y ,µ, σ) = n log
(

1√
2πσ

)
− 1

2σ2

n∑
i=1

(Yi − µi)2. (5)

Obviously, maximizing this log-likelihood is equivalent to minimizing the least squares criterion.
2

Example 6 (Bernoulli log-likelihood)
The calculation in Example 3 shows that the individual log-likelihoods for the binary responses
equal `(Yi, θi, ψ) = Yi log(µi) + (1− Yi) log(1− µi). This leads to

`(Y ,µ, ψ) =
n∑

i=1

{Yi log(µi) + (1− Yi) log(1− µi)} (6)

for the sample version. 2

The deviance defines an alternative objective function for optimization. Let us first introduce
the scaled deviance which is defined as

D(Y ,µ, ψ) = 2 {`(Y ,µmax, ψ)− `(Y ,µ, ψ)} . (7)

6



Here µmax (which typically equals Y ) is the vector that maximizes the saturated model, i.e. the
function `(Y ,µ, ψ) without imposing any restriction on µ. Since the term `(Y ,µmax, ψ) does
not depend on the parameter β we see that indeed the minimization of the scaled deviance is
equivalent to the maximization of the sample log-likelihood (4).

If we now plug-in the exponential family form (1) into (4) we obtain

`(Y ,µ, ψ) =
n∑

i=1

{
Yiθi − b(θi)

a(ψ)
− c(Yi, ψ)

}
. (8)

Obviously, neither a(ψ) nor c(Yi, ψ) depend on the unknown parameter vector β. Therefore, it
is sufficient to consider

n∑
i=1

{Yiθi − b(θi)} (9)

for the maximization. The deviance analog of (9) is the (non-scaled) deviance function

D(Y ,µ) = D(Y ,µ, ψ) a(ψ). (10)

The (non-scaled) deviance D(Y ,µ) can be seen as the GLM equivalent of the residual sum of
squares (RSS) in linear regression as it compares the log-likelihood ` for the “model” µ with the
maximal achievable value of `.

3.3 Iteratively Reweighted Least Squares Algorithm

We will now minimize the deviance with respect to β. If we denote the gradient of (10) by

∇(β) =
∂

∂β

[
−2

n∑
i=1

{Yiθi − b(θi)}
]

= −2
n∑

i=1

{
Yi − b′(θi)

} ∂

∂β
θi , (11)

our optimization problem consists in solving

∇(β) = 0. (12)

Note that this is (in general) a nonlinear system of equations in β and an iterative solution
has to be computed. The smoothness of the link function allows us to compute the Hessian of
D(Y ,µ), which we denote by H(β). Now a Newton–Raphson algorithm can be applied which
determines the optimal β̂ using the following iteration steps:

β̂
new

= β̂
old −

{
H
(

β̂
old
)}−1

∇
(

β̂
old
)
.

A variant of the Newton–Raphson is the Fisher scoring algorithm that replaces the Hessian by
its expectation with respect to the observations Yi:

β̂
new

= β̂
old −

{
EH

(
β̂

old
)}−1

∇
(

β̂
old
)
.

To find simpler representations for these iterations, recall that we have µi = G(ηi) = G(X>
i β) =

b′(θi). By taking the derivative of the right hand term with respect to β this implies

b′(θi)
∂

∂β
θi = G(X>

i β) Xi.

Using that b′′(θi) = V (µi) as established in (3) and taking derivatives again, we finally obtain

∂

∂β
θi =

G′(ηi)
V (µi)

Xi

∂2

∂ββ> θi =
G′′(ηi)V (µi)−G′(ηi)2V ′(µi)

V (µi)2
XiX

>
i .
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From this we can express the gradient and the Hessian of the deviance by

∇(β) = −2
n∑

i=1

{Yi − µi}
G′(ηi)
V (µi)

Xi

H(β) = 2
n∑

i=1

{
G′(ηi)2

V (µi)
− {Yi − µi}

G′′(ηi)V (µi)−G′(ηi)2V ′(µi)
V (µi)2

}
XiX

>
i .

The expectation of H(β) in the Fisher scoring algorithm equals

EH(β) = 2
n∑

i=1

{
G′(ηi)2

V (µi)

}
XiX

>
i .

Let us consider only the Fisher scoring algorithm for the moment. We define the weight
matrix

W = diag

(
G′(η1)2

V (µ1)
, . . . ,

G′(ηn)2

V (µn)

)

and the vectors Ỹ = (Ỹ1, . . . , Ỹn)>, Z = (Z1, . . . , Zn)> by

Ỹi =
Yi − µi

G′(ηi)
, Zi = ηi + Ỹi = X>

i βold +
Yi − µi

G′(ηi)
.

Denote further by X the design matrix given by the rows x>i . Then, the Fisher scoring iteration
step for β can be rewritten as

βnew = βold + (X>WX)−1X>WỸ = (X>WX)−1X>WZ . (13)

This immediately shows that each Fisher scoring iteration step is the result of a weighted least
squares regression of the adjusted dependent variables Zi on the explanatory variables Xi. Since
the weights are recalculated in each step we speak of the iteratively reweighted least squares
(IRLS) algorithm. For the Newton–Raphson algorithm a representation equivalent to (13) can
be found, only the weight matrix W differs.

The iteration will be stopped when the parameter estimate and/or the deviance do not change
significantly anymore. We denote the final parameter estimate by β̂.

3.4 Remarks on the Algorithm

Let us first note two special cases for the algorithm:

• In the linear regression model, where we have G′ ≡ 1 and µi = ηi = X>
i β, no iteration is

necessary. Here the ordinary least squares estimator gives the explicit solution of (12).

• In the case of a canonical link function we have b′(θi) = G(θi) = G(ηi) and hence
b′′(θi) = G′(ηi) = V (µi). Therefore the Newton–Raphson and the Fisher scoring algo-
rithms coincide.

There are several further remarks on the algorithm which concern in particular starting values
and the computation of relevant terms for the statistical analysis:

• Equation (13) implies that in fact we do not need a starting value for β. Indeed the adjusted
dependent variables Zi can be equivalently initialized by using appropriate values for ηi,0

and µi,0. Typically, the following initialization is used (McCullagh and Nelder, 1989):

? For all but binomial models set µi,0 = Yi and ηi,0 = G(µi,0).
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? For binomial models set µi,0 = (Yi + 1
2)/(k + 1) and ηi,0 = G(µi,0). (Recall that this

holds with k = 1 in the Bernoulli case.)

The latter definition is based on the observation that G can not be applied to binary data.
Therefore a kind of smoothing is used to obtain µi,0 in the binomial case.

• During the iteration the convergence can be controlled by checking the relative change in
the coefficients √√√√(βnew − βold)>(βnew − βold)

βold>βold
< ε

and/or the relative change in the deviance∣∣∣∣∣D(Y ,µnew)−D(Y ,µold)
D(Y ,µold)

∣∣∣∣∣ < ε .

• An estimate ψ̂ for the dispersion parameter ψ can be obtained from either the Pearson χ2

statistic

â(ψ) =
1

n− p

n∑
i=1

(Yi − µ̂i)2

V (µ̂i)
, (14)

or using deviance

â(ψ) =
D(Y ,µ)
n− p

. (15)

Here we use p for the number of estimated parameters and µ̂i for the estimated regression
function at the ith observation. Similarly, µ̂ is the estimated µ. Both estimators for a(ψ)
coincide for normal linear regression and follow an exact χ2

n−p distribution then. The
number n− p (number of observations minus number of estimated parameters) is denoted
as the degrees of freedom of the deviance.

• Typically, software for GLM allows for offsets and weights in the model. For details on
the inclusion of weights we refer to Subsection 5.1. Offsets are deterministic components
of η which can vary over the observations i. The model that is then fitted is

E(Yi|Xi) = G(X>
i β + oi).

Offsets may be used to fit a model where a part of the coefficients is known. The iteration
algorithm stays unchanged except for the fact that the optimization is only necessary with
respect to the remaining unknown coefficients.

• Since the variance of Yi will usually depend on Xi we cannot simply analyze residuals of
the form Yi−µ̂i. Instead, appropriate transformations have to be used. Classical proposals
are Pearson residuals

rP
i =

Yi − µ̂i√
V (µ̂i)

,

deviance residuals
rD
i = sign(Yi − µ̂i)

√
di ,

where di is the contribution of the ith observation to the deviance, and Anscombe residuals

rA
i =

A(Yi)−A(µ̂i)
A′(µ̂i)

√
V (µ̂i)

,

where A(µ) =
∫ µ V −1/3(u) du.
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3.5 Model Inference

The resulting estimator β̂ has an asymptotic normal distribution (except of course for the normal
linear regression case when this is an exact normal distribution).

Theorem 1
Under regularity conditions we have for the estimated coefficient vector

√
n(β̂ − β) → N(0,Σ) as n→∞ .

As a consequence for the scaled deviance and the log-likelihood approximately hold D(Y , µ̂, ψ) ∼
χ2

n−p and 2{`(Y , µ̂, ψ)− `(Y ,µ, ψ)} ∼ χ2
p . 2

For details on the necessary conditions see for example Fahrmeir and Kaufmann (1984). Note
also that the asymptotic covariance Σ for the coefficient estimator β̂ is the inverse of the Fisher
information matrix, i.e.

I = −E
{

∂2

∂ββT
`(Y, µ, ψ)

}
.

Since I can be estimated by the negative Hessian of the log-likelihood or its expectation, this
suggests the estimator

Σ̂ = a(ψ̂)

[
1
n

n∑
i=1

{
G′(ηi,last)2

V (µi,last)

}
XiX

>
i

]−1

.

Using the estimated covariance we are able to test hypotheses about the components of β.
For model choice between two nested models a likelihood ratio test (LR test) is used. Assume

that M0 (p0 parameters) is a submodel of the model M (p parameters) and that we have
estimated them as µ̂0 and µ̂. For one-parameter exponential families (without a nuisance
parameter ψ) we use that asymptotically

D(Y ,µ0)−D(Y ,µ) ∼ χ2
p−p0

. (16)

The left hand side of (16) is a function of the ratio of the two likelihoods deviance difference
equals minus twice the log-likelihood difference. In a two-parameter exponential family (ψ is to
be estimated) one can approximate the likelihood ratio test statistic by

(n− p){D(Y ,µ0)−D(Y ,µ)}
(p− p0)D(Y ,µ)

∼ Fp−p0,n−p (17)

using the analog to the normal linear regression case (Venables and Ripley, 2002, Chapter 7).
Model selection procedures for possibly non-nested models can be based on Akaike’s informa-

tion criterion (Akaike, 1973)
AIC = D(Y , µ̂, ψ̂) + 2p,

or Schwarz’ Bayes information criterion (Schwarz, 1978)

BIC = D(Y , µ̂, ψ̂) + log(n)p,

where again p denotes the number of estimated parameters. For a general overview on model
selection techniques see also Chapter III.1 of this handbook.
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4 Practical Aspects

To illustrate the GLM in practice we recall Example 1 on credit worthiness. The credit data set
that we use (Fahrmeir and Tutz, 1994) contains n = 1000 observations on consumer credits and
a variety of explanatory variables. We have selected a subset of eight explanatory variables for
the following examples.

The model for credit worthiness is based on the idea that default can be predicted from the
individual and loan characteristics. We consider criteria as age, information on previous loans,
savings, employment and house ownership to characterize the credit applicants. Amount and
duration of the loan are prominent features of the granted loans. Some descriptive statistics can
be found in Table 3. We remark that we have categorized the durations (months) into intervals
since most of the realizations are multiples of 3 or 6 months.

Table 3: Credit data.
Variable Yes No (in %)
Y (observed default) 30.0 70.0
PREVIOUS (no problem) 38.1 61.9
EMPLOYED (≥ 1 year) 93.8 6.2
DURATION (9, 12] 21.6 78.4
DURATION (12, 18] 18.7 81.3
DURATION (18, 24] 22.4 77.6
DURATION ≥ 24 23.0 77.0
SAVINGS 18.3 81.7
PURPOSE (buy a car) 28.4 71.6
HOUSE (owner) 15.4 84.6

Min. Max. Mean Std.Dev.
AMOUNT (in DM) 250 18424 3271.248 2822.752
AGE (in years) 19 75 35.542 11.353

We are at the first place interested in estimating the probability of credit default in dependence
of the explanatory variables X. Recall that for binary Y it holds P (Y = 1|X) = E(Y |X). Our
first approach is a GLM with logit link such that P (Y = 1|X) = exp(X>β)/{1 + exp(X>β)}.

Example 7 (Credit default on AGE)
We initially estimate the default probability solely related to age, i.e. the model

P (Y = 1|AGE) =
exp(β0 + β1AGE)

1 + exp(β0 + β1AGE)

or equivalently logit {P (Y = 1|AGE)} = β0 + β1AGE. The resulting estimates of the constant
β0 and the slope parameter β1 are displayed in Table 4 together with summary statistics on the
model fit.

From the table we see that the estimated coefficient of AGE has a negative sign. Since the link
function and its inverse are strictly monotone increasing, we can conclude that the probability
of default must thus be decreasing with increasing AGE. Figure 1 shows on the left frequency
barplots of AGE separately for Y = 1 and Y = 0. From the observed frequencies we can recognize
clearly the decreasing propensity to default. The right graph in Figure 1 displays the estimated
probabilities P (Y = 1|AGE) using the fitted logit model which are indeed decreasing.

The t-values (
√
n β̂j/

√
Σ̂jj) show that the coefficient of AGE is significantly different from 0

while the estimated constant is not. The test that is used here is an approximative t-test such
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Table 4: Credit default on AGE (logit model).
Variable Coefficient t-value
constant -0.1985 -0.851
AGE -0.0185 -2.873
Deviance 1213.1
df 998
AIC 1217.1
Iterations 4
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Figure 1: Credit default on AGE, left: frequency barplots of AGE for Y = 1 (yellow) and Y = 0
(red), right: estimated probabilities.

that z1−α/2-quantile of the standard normal can be used as critical value. This implies that at
the usual 5% level we compare the absolute value of the t-value with z0.975 ≈ 1.96.

A more general approach to test for the significance of AGE is to compare the fitted model with
a model that involves only a constant default probability. Typically software packages report the
deviance of this model as null deviance or similar. In our case we find a null deviance of 1221.7
at 999 degrees of freedom. If we apply the LR test statistic (16) to compare the null deviance to
the model deviance of 1213.1 at 998 degrees of freedom, we find that constant model is clearly
rejected at a significance level of 0.33%. 2

Models using different link functions cannot be directly compared as the link functions might
be differently scaled. In our binary response model for example a logit or a probit link function
may be reasonable. However, the variance parameter of the standard logistic distribution is
π2/3 whereas that of the standard normal is 1. We therefore need to rescale one of the link
functions in order to compare the resulting model fits. Figure 2 shows the standard logistic cdf
(the inverse logit link) against the cdf of N(0, π2/3). The functions in the left graph of Figure 2
are hardly distinguishable. If we zoom in (right graph) we see that the logistic cdf vanishes
to zero at the left boundary at a lower rate. This holds similarly for the right boundary and
explains the ability of logit models to (slightly) better handle the case of extremal observations.

Example 8 (Probit versus logit)
If we want to compare the estimated coefficients from a probit to that of the logit model we need
to rescale the probit coefficients by π/

√
3. Table 5 shows the results of a probit for credit default

12
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Figure 2: Logit (solid blue) versus appropriately rescaled probit link (dashed red), left: on the
range [−5, 5], right: on the range of [−5,−1].

on AGE. The resulting rescaled coefficient for AGE in is of similar size as that for the logit
model (cf. Table 4) while the constant is not significantly different from 0 in both fits. The
deviance and the AIC of the probit fit are slightly larger.

A Newton–Raphson iteration (instead of the Fisher scoring reported in Table 5) does give
somewhat different coefficients but returns nearly the same value of the deviance (1213.268 for
Newton–Raphson versus 1213.265 for Fisher scoring). 2

Table 5: Credit default on AGE (probit model), original and rescaled coefficients for comparison
with logit.

Variable Coefficient t-value
(original) (rescaled)

constant -0.1424 -0.2583 -1.022
AGE -0.0109 -0.0197 -2.855
Deviance 1213.3
df 998
AIC 1217.3
Iterations 4 (Fisher Scoring)

The next two examples intend to analyze if the fit could be improved by using a nonlinear
function on AGE instead of η = β0 +β1AGE. Two principally different approaches are possible:

• include higher order terms of AGE into η,

• categorize AGE in order to fit a stepwise constant η function.

Example 9 (Credit default on polynomial AGE)
We fit two logit models using second and third order terms in AGE. The estimated coefficients
are presented in Table 6. A comparison of the quadratic fit and the linear fit from Example 7
using the LR test statistic (16) shows that the linear fit is rejected at a significance level of 3%.
A subsequent comparison of the quadratic against the cubic fit no significant improvement by
the latter model. Thus, the quadratic term for AGE improves the fit whereas the cubic term
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does not show any further statistically significant improvement. This result is confirmed when
we compare the AIC values of both models which are practically identical. Figure 3 shows the
estimated default probabilities for the quadratic (left) and cubic AGE fits. We find that the
curves are of similar shape. 2

Table 6: Credit default on polynomial AGE (logit model).
Variable Coefficient t-value Coefficient t-value
constant 1.2430 1.799 0.4092 1.909
AGE -0.0966 -2.699 -0.3240 -1.949
AGE**2 9.56· 10−4 2.234 6.58· 10−3 1.624
AGE**3 – – -4.33· 10−5 -1.390
Deviance 1208.3 1206.3
df 997 996
AIC 1214.3 1214.3
Iterations 4 4
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Figure 3: Credit default on polynomial AGE, left: estimated probabilities from quadratic func-
tion, right: estimated probabilities from cubic function.

To incorporate a possible nonlinear impact of a variable in the index function, we can alter-
natively categorize this variable. Another term for this is the construction of dummy variables.
The most classical form of the categorization consists in using a design matrix that sets a value
of 1 in the column corresponding to the category if the category is true and 0 otherwise. To
obtain a full rank design matrix we omit one column for the reference category. In our example
we leave out the first category which means that all estimated coefficients have to be compared
to the zero coefficient of the reference category. Alternative categorization setups are given by
omitting the constant, the sum coding (restrict the coefficients to sum up to 0), and the Helmert
coding.

Example 10 (Credit default on categorized AGE)
We have chosen the intervals (18, 23], (23, 28], . . . , (68, 75] as categories. Except for the last
interval all of them are of the same length. The first interval (18, 23] is chosen for the reference
such that we will estimate coefficients only for the remaining 10 intervals.
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Frequency barplots for the intervals and estimated default probabilities are displayed in Fig-
ure 4. The resulting coefficients for this model are listed in Table 7. We see here that all
coefficient estimates are negative. This means, keeping in mind that the group of youngest credit
applicants is the reference, that all applicants from other age groups have an (estimated) lower
default probability. However, we do not have a true decrease in the default probabilities with
AGE since the coefficients do not form a decreasing sequence. In the range from age 33 to 63
we find two local minima and maxima for the estimated default probabilities.

Table 7: Credit default on categorized AGE (logit model).
Variable Coefficients t-values
constant -0.4055 -2.036
AGE (23,28] -0.2029 -0.836
AGE (28,33] -0.3292 -1.294
AGE (33,38] -0.9144 -3.320
AGE (38,43] -0.5447 -1.842
AGE (43,48] -0.6763 -2.072
AGE (48,53] -0.8076 -2.035
AGE (53,58] -0.5108 -1.206
AGE (58,63] -0.4055 -0.864
AGE (63,68] -0.7577 -1.379
AGE (68,75] -1.3863 -1.263
Deviance 1203.2
df 989
AIC 1225.2
Iterations 4
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Figure 4: Credit default on categorized AGE, left: frequency barplots of categorized AGE for
Y = 1 (yellow) and Y = 0 (red), right: estimated probabilities.

It is interesting to note that the deviance of the categorized AGE fit is the smallest that we
obtained up to now. This is explained by the fact that we have fitted the most flexible model
here. Unfortunately, this flexibility pays with the number of parameters. The AIC criterion as
a compromise between goodness-of-fit and number of parameters states that all previous fitted
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models are preferable. Nevertheless, categorization is a valuable tool to explore if there are
nonlinear effects. A related technique is local regression smoothing which is shortly reviewed in
Subsection 5.8. 2

The estimation of default probabilities and the prediction of credit default should incorpo-
rate more than only one explanatory variable. Before fitting the full model with all available
information, we discuss the modeling of interaction effects.

Example 11 (Credit default on AGE and AMOUNT)
The variable AMOUNT is the second continuous explanatory variable in the credit data set.
(Recall that duration is quantitative as well but quasi-discrete.) We will therefore use AGE
and AMOUNT to illustrate the effects of the simultaneous use of two explanatory variables. A
very simple model is of course logit {P (Y = 1|AGE,AMOUNT)} = β0 + β1AGE+ β2AMOUNT.
This model, however, separates the impact of AGE and AMOUNT into additive components.
The effect of having both characteristics simultaneously is modeled by adding the multiplicative
interaction term AGE∗AMOUNT. On the other hand we have seen that at least AGE should
be complemented by a quadratic term. For that reason we compare the linear interaction model
logit {P (Y = 1|AGE,AMOUNT)} = β0 + β1AGE + β2AMOUNT + β3AGE ∗ AMOUNT with a
specification using quadratic terms and a third model specification using both, quadratic and
interaction terms.

Table 8: Credit default on AGE and AMOUNT (logit model).
Variable Coefficient t-value Coefficient t-value Coefficient t-value
constant 0.0159 -0.044 1.1815 1.668 1.4864 2.011
AGE -0.0350 -3.465 -0.1012 -2.768 -0.1083 -2.916
AGE**2 – – 9.86· 10−4 2.251 9.32· 10−4 2.100
AMOUNT -2.80· 10−5 -0.365 -7.29· 10−6 -0.098 -1.18· 10−4 -1.118
AMOUNT**2 – – 1.05· 10−8 1.753 9.51· 10−9 1.594
AGE*AMOUNT 3.99· 10−6 1.951 – – 3.37· 10−6 1.553
Deviance 1185.1 1180.2 1177.7
df 996 995 994
AIC 1193.1 1190.2 1189.7
Iterations 4 4 4

Table 8 shows the results for all three fitted models. The model with quadratic and interac-
tion terms has the smallest AIC of the three fits. Pairwise LR tests show, however, that the
largest of the three models is not significantly better than the model without the interaction term.
The obtained surface on AGE and AMOUNT from the quadratic+interaction fit is displayed in
Figure 5. 2

Let us remark that interaction terms can also be defined for categorical variables. In this case
interaction is modeled by including dummy variables for all possible combinations of categories.
This may largely increase the number of parameters to estimate.

Example 12 (Credit default on the full set of explanatory variables)
In a final analysis we present now the results for the full set of variables from Table 3. We
first estimated a logit model using all variables (AGE and AMOUNT also with quadratic and
interaction terms). Most of the estimated coefficients in the second column of Table 9 have
the expected sign. For example, the default probability decreases if previous loan were paid back
without problems, the credit applicant is employed and has some savings, and the loan is used
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Figure 5: Credit default on AGE and AMOUNT using quadratic and interaction terms, left:
surface and right: contours of the fitted η function.

to buy a car (rather than to invest the loan into goods which cannot serve as a security). A bit
surprising is the fact that house owners seem to have higher default probabilities. This might be
explained by the fact that house owners usually have additional obligations. The DURATION
variable is categorized as described above. Again we have used the first category (loans up to 9
months) as reference. Since the series of DURATION coefficients is monotone increasing, we
can conclude that longer duration increases the default probability. This is also plausible.

After fitting the full model we have run an automatic stepwise model selection based on AIC.
This reveals that the insignificant terms AGE*AMOUNT and EMPLOYED should be omitted.
The fitted coefficients for this final model are displayed in the fourth column of Table 9. 2

5 Complements and Extensions

For further reading on GLM we refer to the textbooks of Dobson (2001), McCullagh and Nelder
(1989) and Hardin and Hilbe (2001) (the latter with a special focus on STATA). Venables and
Ripley (2002, Chapter 7) and Gill (2000) present the topic of generalized linear models in a very
compact form. Collett (1991), Agresti (1996), Cox and Snell (1989), and Bishop et al. (1975)
are standard references for analyzing categorical responses. We recommend the monographs of
Fahrmeir and Tutz (1994) and Lindsey (1997) for a detailed introduction to GLM with a focus
on multivariate, longitudinal and spatial data. In the following sections we will shortly review
some specific variants and enhancements of the GLM.

5.1 Weighted Regression

Prior weights can be incorporated to the generalized linear model by considering the exponential
density in the form

f(yi, θi, ψ) = exp
[
wi{yθ − b(θ)}

a(ψ)
+ c(y, ψ,wi)

]
.

This requires to optimize the sample log-likelihood

`(Y ,µ, ψ) =
n∑

i=1

wi

{
Yiθi − b(θi)

a(ψ)
− c(Yi, ψ, wi)

}
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Table 9: Credit default on full set of variables (logit model).
Variable Coefficient t-value Coefficient t-value
constant 1.3345 1.592 0.8992 1.161
AGE -0.0942 -2.359 -0.0942 -2.397
AGE**2 8.33· 10−4 1.741 9.35· 10−4 1.991
AMOUNT -2.51· 10−4 -1.966 -1.67· 10−4 -1.705
AMOUNT**2 1.73· 10−8 2.370 1.77· 10−8 2.429
AGE*AMOUNT 2.36· 10−6 1.010 – –
PREVIOUS -0.7633 -4.652 -0.7775 -4.652
EMPLOYED -0.3104 -1.015 – –
DURATION (9, 12] 0.5658 1.978 0.5633 1.976
DURATION (12, 18] 0.8979 3.067 0.9127 3.126
DURATION (18, 24] 0.9812 3.346 0.9673 3.308
DURATION ≥ 24 1.5501 4.768 1.5258 4.710
SAVINGS -0.9836 -4.402 -0.9778 -4.388
PURPOSE -0.3629 -2.092 -0.3557 -2.051
HOUSE 0.6603 3.155 0.7014 3.396
Deviance 1091.5 1093.5
df 985 987
AIC 1121.5 1119.5
Iterations 4 4

or its equivalent, the deviance.
The weights wi can be 0 or 1 in the simplest case that one wants to exclude specific observations

from the estimation. The typical case of applying weights is the case of repeated independent
realizations.

5.2 Overdispersion

Overdispersion may occur in one-parameter exponential families where the variance is supposed
to be a function of the mean. This concerns in particular the binomial or Poisson families where
we have EY = µ and Var(Y ) = µ(1− µ/k) or Var(Y ) = µ, respectively. Overdispersion means
that the actually observed variance from the data is larger than the variance imposed by the
model. The source for this may be a lack of independence in the data or a misspecification of the
model. One possible approach is to use alternative models that allows for a nuisance parameter
in the variance, as an example think of the negative binomial instead of the Poisson distribution.
For detailed discussions on overdispersion see Collett (1991) and Agresti (1990).

5.3 Quasi- or Pseudo-Likelihood

Let us remark that in the case that the distribution of Y itself is unknown but its two first
moments can be specified, the quasi-likelihood function may replace the log-likelihood function.
This means we still assume that

E(Y ) = µ,

Var(Y ) = a(ψ)V (µ).
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The quasi-likelihood function is defined through

`(y, θ, ψ) =
1

a(ψ)

y∫
µ(θ)

(s− y)
V (s)

ds , (18)

cf. Nelder and Wedderburn (1972). If Y comes from an exponential family then the derivatives
of the log-likelihood and quasi-likelihood function coincide. Thus, (18) establishes in fact a
generalization of the likelihood approach.

5.4 Multinomial Responses

A multinomial model (or nominal logistic regression) is applied if the response for each obser-
vation i is one out of more than two alternatives (categories). For identification one of the
categories has to be chosen as reference category; without loss of generality we use here the
first category. Denote by πj the probability P (Y = j|X), then we can consider the logits with
respect to the first category, i.e.

logit(πj) = log
(
πj

π1

)
= X>

j βj .

The terms Xj and βj indicate that the explanatory variables and their corresponding coefficients
may depend on category j. Equivalently we can define the model by

P (Y = 1|X) =
1

1 +
∑J

k=2 exp(X>
k βk)

P (Y = j|X) =
X>

j β

1 +
∑J

k=2 exp(X>
k βk)

.

It is easy to recognize that the logit model is a special case of the multinomial model for exactly
two alternatives.

If the categories are ordered in some natural way then this additional information can be
taken into account. A latent variable approach leads to the cumulative logit model or the
ordered probit model. We refer here to Dobson (2001, Section 8.4) and Greene (2000, Chapter
21) for ordinal logistic regression and ordered probit analysis, respectively.

5.5 Contingency Tables

The simplest form of a contingency table

Category 1 2 . . . J
∑

Frequency Y1 Y2 . . . YJ n

with one factor and a predetermined sample size n of observations is appropriately described by
a multinomial distribution and can hence be fitted by the multinomial logit model introduced
in Subsection 5.4. We could be for instance be interested in comparing the trivial model EY1 =
. . . = EYJ = µ to the model EY2 = µ2, . . . , EYJ = µJ (again we use the first category as
reference). As before further explanatory variables can be included into the model.

Two-way or higher dimensional contingency tables involve a large variety of possible models.
Let explain this with the help of the following two-way setup:

Category 1 2 . . . J
∑

1 Y11 Y12 . . . Y1J n1•
2 Y21 Y22 . . . Y2J n2•
...

...
...

. . .
...

...
K YK1 YK2 . . . YKJ nK•∑

n•1 n•2 . . . n•J n
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Here we assume to have two factors, one with realizations 1, . . . , J , the other with realizations
1, . . . ,K. If the Yjk are independent Poisson variables with parameters µjk, then their sum is a
Poisson variable with parameter E(n) = µ =

∑
µjk. The Poisson assumption implies that the

number of observations n is a random variable. Conditional on n, the joint distribution of the
Yjk is the multinomial distribution. Without additional explanatory variables, one is typically
interested in estimating models of the type

log(EYjk) = β0 + βj + βk

in order to compare this with the saturated model log(EYjk) = β0 + βj + βk + βjk. If the
former model holds then the two factors are independent. Another hypothetical model could
be of the form log(EYjk) = β0 + βj to check whether the second factor matters at all. As in
the multinomial case, further explanatory variables can be included. This type of models is
consequently termed log-linear model. For more details see for example Dobson (2001, Chapter
9) and McCullagh and Nelder (1989, Chapter 6).

5.6 Survival Analysis

Survival data are characterized by non-negative observations which typically have a skewed
distribution. An additional complication arises due to the fact that the observation period may
end before the individual fails such that censored data may occur. The exponential distribution
with density f(y, θ) = θe−θy is a very simple example for a survival distribution. In this special
case the survivor function (the probability to survive beyond y) is given by S(y) = e−θy and
the hazard function (the probability of death within y and y + dy after survival up to y) equals
h(y, θ) = θ. Given additional explanatory variables this function is typically modeled by

h(y, θ) = exp(X>β).

Extensions of this model are given by using the Weibull distribution leading to non-constant
hazards and Cox’ proportional hazards model (Cox, 1972) which uses a semiparametric approach.
More material on survival analysis can be found in Chapter III.12.

5.7 Clustered Data

Clustered data in relation to regression models mean that data from known groups (“clusters”)
are observed. Often these are the result of repeated measurements on the same individuals at
different time points. For example, imagine the analysis of the effect of a medical treatment
on patients or the repeated surveying of households in socio-economic panel studies. Here, all
observations on the same individual form a cluster. We speak of longitudinal or panel data in
that case. The latter term is typically used in the econometric literature.

When using clustered data we have to take into account that observations from the same
cluster are correlated. Using a model designed for independent data may lead to biased results
or at least significantly reduce the efficiency of the estimates.

A simple individual model equation could be written as follows:

E(Yij |Xij) = G−1(X>
ijβj).

Here i is used to denote the ith individual observation in the jth cluster. Of course more complex
specifications, for example with hierarchical clusters, can be formulated as well.

There is a waste amount of literature which deals with many different possible model specifi-
cations. A comprehensive resource for linear and nonlinear mixed effect models (LME, NLME)
for continuous responses is Pinheiro and Bates (2000). The term “mixed” here refers to the
fact that these models include additional random and/or fixed effect components to allow for
correlation within and heterogeneity between the clusters.
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For generalized linear mixed models (GLMM), i.e. clustered observations with responses
from GLM-type distribution, several approaches are possible. For repeated observations, Liang
and Zeger (1986) and Zeger and Liang (1986) propose to use generalized estimating equations
(GEE) which result in a quasi-likelihood estimator. They show that the correlation matrix of
Y j , the response observations from one cluster, can be replaced by a “working correlation” as
long as the moments of Y j are correctly specified. Useful working correlations depend on a
small number of parameters. For longitudinal data an autoregressive working correlation can be
used for example. For more details on GEE see also the monograph by Diggle et al. (2002). In
the econometric literature longitudinal or panel data are analyzed with a focus on continuous
and binary responses. Standard references for econometric panel data analyses are Hsiao (1990)
and Arellano (2003). Models for clustered data with complex hierarchical structure are often
denoted as multilevel models. We refer to the monograph of Goldstein (2003) for an overview.

5.8 Semiparametric Generalized Linear Models

Nonparametric components can be incorporated into the GLM at different places. For example,
it is possible to estimate a single index model

E(Y |X) = g(X>β)

which differs from the GLM by its unknown smooth link function g(•). The parameter vector
β in this model can then be only identified up to scale. The estimation of such models has been
studied e.g. by Ichimura (1993), Weisberg and Welsh (1994) and Gallant and Nychka (1987).

Local regression in combination with likelihood-based estimation is introduced in Loader
(1999). This concerns models of the form

E(Y |X) = G−1 {m(X)} ,

where m is an unknown smooth (possibly multidimensional) function. Further examples of
semiparametric GLM are generalized additive and generalized partial linear models (GAM,
GPLM). These models are able to handle (additional) nonparametric components in the function
η. For example, the GAM is specified in this simplest form by

E(Y |X) = G−1

β0 +
p∑

j=1

mj(Xj)

 .
Here the mj denote univariate (or low dimensional) unknown smooth functions which have to
be estimated. For their identification is should be assumed, that Em(Xj) = 0. The generalized
partial linear model combines a linear and a nonparametric function in the function η and is
specified as

E(Y |X) = G−1
{
X>

1 β +m(X2)
}
.

Example 13 (Semiparametric credit model)
We have fitted a generalized partial linear model as a variant of the final model from Example 12.
The continuous variables AGE and AMOUNT were used as arguments for the nonparametric
component. All other variables of the final model have been included to the linear part of the
index function η. Figure 6 shows the estimated nonparametric function of AGE and AMOUNT.
Although the stepwise model selection in Example 12 indicated that there is no interaction between
AGE and AMOUNT, we see now that this interaction could be in fact of some more sophisticated
form. The estimation was performed using a generalization of the Speckman (1988) estimator
to generalized models. The local kernel weights are calculated from a Quartic (Biweight) kernel
function using bandwidths approximately equal to 33.3% of the ranges of AGE and AMOUNT,
respectively. Details on the used kernel based estimation can be found in Severini and Staniswalis
(1994) and Müller (2001). 2
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Figure 6: Credit default on AGE and AMOUNT using a nonparametric function, left: surface
and right: contours of the fitted function on AGE and AMOUNT.

Some more material on semiparametric regression can be found in Chapters III.5 and III.10
of this handbook. For a detailed introduction to semiparametric extensions of GLM we refer to
the textbooks by Hastie and Tibshirani (1990), Härdle et al. (2004), Ruppert et al. (1990), and
Green and Silverman (1994).
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